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Data Field Encapsulation 

• Sometimes we want variables to be 
accessible only within the class itself 
– Hide from other classes 

 
• Prevents undesired/incorrect tampering 

with variables by methods outside of the 
class 
– Maintain consistency of state 

2 



Without Encapsulation.. 
class BankAccount { 

//Fields 
double balance; 
String name; 
 
//constructor 
BankAccount(String name, double openBalance){ 
 this.name = name; 
 this.balance = openBalance;  
} 

} 
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In Another Class 
class AnotherClass { 
 static void main(String[] args) { 
    //create bank account 
    BankAccount mikesAccount =  
        new BankAccount (“Mike”, 10000000); 
 
    //some tampering… 
   mikesAccount.name = “Zach”; 
 } 
} 

 
 

 

This is not good for poor Mike! 
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Visibility Modifiers 

• public – makes methods and data fields 
accessible by any other class 

• private – makes methods and data 
fields accessible only from within its own 
class 

• (neither) – similar to public but a bit more 
restricted 
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Example, BankAccount 
class BankAccount { 

 
//data fields 
private double balance; 
private String name; 
 
//constructor 
BankAccount(String name, double openBalance){ 
 this.name = name; 
 this.balance = openBalance;  
} 

} 
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Common Object Oriented Practices 

• Accessors – get the value of a data field 
– Sometimes called getters 

 
 
• Mutators – set the value of a data field 

– Sometimes called setters 
 

7 



BankAccount, add accessors 
public class BankAccount { 

–   
–   
–   

//accessors 
public double getBalance(){ 
 return balance; 
} 
 
public String getName(){ 
 return name; 
} 
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BankAccount, add mutators 
//mutators 
public void deposit(double amount){ 
 … 
} 
 
public void withdraw (double amount){ 
 … 
} 

 
 

Notice there is no access to the name 
data field!  Now Zach can’t steal Mike’s 
account. 
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class AnotherClass { 
 static void main(String[] args) { 
    //create bank account 
    BankAccount mikesAccount =  
        new BankAccount (“Mike”, 5); 
 
    //Illegal 
   mikesAccount.name = “Zach”; 
   //Illegal 
   mikesAccount.balance = 100000000; 
 } 
} 

 
 

Now we are safe! 

10 



private Methods  

• Methods of a class that are declared 
private can only be called within the 
class. 

 
 private void setName(String newName) 
{ 

  … 

 } 
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class AnotherClass { 
 static void main(String[] args) { 
    //create bank account 
    BankAccount mikesAccount =  
        new BankAccount (“Mike”, 5); 
 
    //Illegal, private method of Bank Account 
   mikesAccount.setName(“Zach”); 
 } 
} 

 
 

 

Now we are safe! 
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Accessibility Intuition 

• Accessibility modifiers are not used for 
safety 
– There are ways around them in Java! 

 
• They are used for encapsulation! 

– Hide unnecessary state/methods from user of 
class 

– Prevent access to state to maintain object 
consistency 
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Consistency Example 
class Family { 

 Person[] males; 

 Person[] females; 

 

 //want totalMembers = males + females  

 int totalMembers = 0; 

 … 

 public void addFemale(Person person)… 

 public void addMale(Person person)… 

} 
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Inconsistent 
class AnotherClass { 
 void method() { 
  Family myFam = new Family(); 
  myFam.addMale(new Person(“Mike”)); 
  myFam.addFemale(new Person(“Mary”)); 
  myFam.totalMembers = 10; 
  //now myFam is inconsistent! 
 } 
} 
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A Better Way! 
class Family { 
 private Person[] males; 
 private Person[] females; 
 //want totalMembers = males + females  
 private int totalMembers = 0; 
 … 
 public void addFemale(Person person) { 
  females[…] = person; 
  totalMembers++; 
 } 
} 
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Object References 

• An object variable is really a reference to 
the object. 
– A pointer is a good way of thinking about it 

 
• You must “dereference” the variable to 

access method and fields 
– Ex: person.getName(), course.number 
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References 

• You can have 2 variables reference the 
same object 

 
 
Integer a = new Integer(5); 

Integer b = a; 

//a and b reference the same object 
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Primitive Argument Passing 

• Remember that primitive arguments are 
passed by value. 

 
• If you change a primitive argument inside 

of a method, the variable in the calling 
method will remain unchanged. 
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Review:  
Primitive Argument Passing 

public static int meth(int a, int b) { 
   
 a = a * 2; 
 b = b * 3; 
 return a + b;  
}  

public static void main(String[] args) { 
 int x = 5; 
 int y = 10; 
 int z = 0; 
   
 z = meth(x, y); 
 //what is the value of x and y? 
} 
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Object Argument Passing 

• Object Arguments are pass by reference 
– A copy is not made 

 
• Any changes to the object in the method 

are visible in the calling method 
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Object Argument Passing 

void changeName(Person person) { 
   
 person.setName(“Mike”);  
}  

public static void main(String[] args) { 
 Person cory = new Person(“Cory”); 
   
 changeName(person); 
 
 //what is the value cory.getName()? 
} 
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