
Accelerating
Information Technology

Innovation

http://aiti.mit.edu

Cali, Colombia
Summer 2012

Lesson 07 – Encapsulation and
References

http://aiti.mit.edu/�

Data Field Encapsulation

• Sometimes we want variables to be
accessible only within the class itself
– Hide from other classes

• Prevents undesired/incorrect tampering

with variables by methods outside of the
class
– Maintain consistency of state

2

Without Encapsulation..
class BankAccount {

//Fields
double balance;
String name;

//constructor
BankAccount(String name, double openBalance){
 this.name = name;
 this.balance = openBalance;
}

}

 3

In Another Class
class AnotherClass {
 static void main(String[] args) {
 //create bank account
 BankAccount mikesAccount =
 new BankAccount (“Mike”, 10000000);

 //some tampering…
 mikesAccount.name = “Zach”;
 }
}

This is not good for poor Mike!

4

Visibility Modifiers

• public – makes methods and data fields
accessible by any other class

• private – makes methods and data
fields accessible only from within its own
class

• (neither) – similar to public but a bit more
restricted

5

Example, BankAccount
class BankAccount {

//data fields
private double balance;
private String name;

//constructor
BankAccount(String name, double openBalance){
 this.name = name;
 this.balance = openBalance;
}

}

6

Common Object Oriented Practices

• Accessors – get the value of a data field
– Sometimes called getters

• Mutators – set the value of a data field

– Sometimes called setters

7

BankAccount, add accessors
public class BankAccount {

–
–
–

//accessors
public double getBalance(){
 return balance;
}

public String getName(){
 return name;
}

 8

BankAccount, add mutators
//mutators
public void deposit(double amount){
 …
}

public void withdraw (double amount){
 …
}

Notice there is no access to the name
data field! Now Zach can’t steal Mike’s
account.

9

class AnotherClass {
 static void main(String[] args) {
 //create bank account
 BankAccount mikesAccount =
 new BankAccount (“Mike”, 5);

 //Illegal
 mikesAccount.name = “Zach”;
 //Illegal
 mikesAccount.balance = 100000000;
 }
}

Now we are safe!

10

private Methods

• Methods of a class that are declared
private can only be called within the
class.

 private void setName(String newName)
{

 …

 }

11

class AnotherClass {
 static void main(String[] args) {
 //create bank account
 BankAccount mikesAccount =
 new BankAccount (“Mike”, 5);

 //Illegal, private method of Bank Account
 mikesAccount.setName(“Zach”);
 }
}

Now we are safe!

12

Accessibility Intuition

• Accessibility modifiers are not used for
safety
– There are ways around them in Java!

• They are used for encapsulation!

– Hide unnecessary state/methods from user of
class

– Prevent access to state to maintain object
consistency

13

Consistency Example
class Family {

 Person[] males;

 Person[] females;

 //want totalMembers = males + females

 int totalMembers = 0;

 …

 public void addFemale(Person person)…

 public void addMale(Person person)…

}

14

Inconsistent
class AnotherClass {
 void method() {
 Family myFam = new Family();
 myFam.addMale(new Person(“Mike”));
 myFam.addFemale(new Person(“Mary”));
 myFam.totalMembers = 10;
 //now myFam is inconsistent!
 }
}

15

A Better Way!
class Family {
 private Person[] males;
 private Person[] females;
 //want totalMembers = males + females
 private int totalMembers = 0;
 …
 public void addFemale(Person person) {
 females[…] = person;
 totalMembers++;
 }
}

16

Object References

• An object variable is really a reference to
the object.
– A pointer is a good way of thinking about it

• You must “dereference” the variable to

access method and fields
– Ex: person.getName(), course.number

17

References

• You can have 2 variables reference the
same object

Integer a = new Integer(5);

Integer b = a;

//a and b reference the same object

18

Primitive Argument Passing

• Remember that primitive arguments are
passed by value.

• If you change a primitive argument inside

of a method, the variable in the calling
method will remain unchanged.

19

Review:
Primitive Argument Passing

public static int meth(int a, int b) {

 a = a * 2;
 b = b * 3;
 return a + b;
}

public static void main(String[] args) {
 int x = 5;
 int y = 10;
 int z = 0;

 z = meth(x, y);
 //what is the value of x and y?
}

20

Object Argument Passing

• Object Arguments are pass by reference
– A copy is not made

• Any changes to the object in the method

are visible in the calling method

21

Object Argument Passing

void changeName(Person person) {

 person.setName(“Mike”);
}

public static void main(String[] args) {
 Person cory = new Person(“Cory”);

 changeName(person);

 //what is the value cory.getName()?
}

22

	Accelerating �Information Technology �Innovation
	Data Field Encapsulation
	Without Encapsulation..
	In Another Class
	Visibility Modifiers
	Example, BankAccount
	Common Object Oriented Practices
	BankAccount, add accessors
	BankAccount, add mutators
	Now we are safe!
	private Methods
	Now we are safe!
	Accessibility Intuition
	Consistency Example
	Inconsistent
	A Better Way!
	Object References
	References
	Primitive Argument Passing
	Review: �Primitive Argument Passing
	Object Argument Passing
	Object Argument Passing

