
Accelerating  
Information Technology  

Innovation 

http://aiti.mit.edu 

Cali, Colombia 
Summer 2012 

Lección 03 – Control Structures 

http://aiti.mit.edu/�


Agenda 

1. Block Statements 
 

2. Decision Statements 
 

3. Loops 

2 



What are Control Structures? 
• Without control structures, a computer would evaluate all 

instructions in a program sequentially 
 

• Allow you to control: 
– the order in which instructions are evaluated 
– which instructions are evaluated 
– the “flow” of the program 

 
• Use pre-established code structures: 

– block statements (anything contained within curly brackets) 
– decision statements ( if, if-else, switch ) 
– Loops ( for, while ) 

3 



Block Statements 

• Statements contained within curly brackets 
 
 

• Evaluated sequentially when given 
instruction to “enter” curly brackets 

• Most basic control structure (building block 
of other control structures) 

{  
  statement1; 
  statement2; 
} 
  

4 



Decision Statements: if-then  

The “if” decision statement causes a 
program to execute a statement 
conditionally* 

   if (condition) { 
    statement; 
  } 

  next_statement; 
 

*Executes a statement when a condition is true 
 

 
 

5 



Dissecting if-then 
  if (condition) { 
  statement; 
  } 

  next_statement; 
 

• The condition must produce either true or 
false, also known as a boolean value 

 
• If condition returns true, statement is 

executed and then next_statement 
 

• If condition returns false, statement is not 
executed and the program continues at 
next_statement 

6 



execute  
statement 

execute  
next_statement 

 condition   
true? 

if (condition) {  
  statement; 
} 
next_statement;  

yes 

no 

if-then Statement Flow Chart 

7 



if-then Example 
 
int price = 5; 
 
if (price > 3) { 
  System.out.println(“Too expensive”); 
} 
//continue to next statement 
 
 
 

Output: 
 
Too expensive 
 
 
   

8 



if-then-else Statements 
• The basic “if” statement can be extended by adding the 

“else” clause in order to do something if expression is false 
    if (condition) { 
    statement1; 
  } 
  else { 
    statement2; 
  } 
  next_statement; 
 

• Again, the condition must produce a boolean value 
 

• If condition returns true, statement1 is executed and then 
next_statement is executed. 
 

• If condition returns false, statement2 is executed and 
then next_statement is executed. 
 9 



condition 
TRUE? 

execute  
statement1 

execute  
statement2 

execute  
next_statement 

if (condition){ 
    statement1; 
}  
else { 
    statement2; 
} 
next_statement;  

no yes 

if-then-else Statement Flow Chart 

10 



if-then-else Example 
 
 
int price = 2; 
 
if (price > 3) { 
  System.out.println(“Too expensive”); 
} 
else { 
  System.out.println(“Good deal”); 
} 
//continue to next statement 
 
Output: 
 
Good deal 

11 



Chained if-then Statements 

• Note that you can combine if-else statements below to 
make a chain to deal with more than one case 

 

 if (grade == 'A') 
 System.out.println("You got an A."); 
else if (grade == 'B') 
 System.out.println("You got a B."); 
else if (grade == 'C') 
 System.out.println("You got a C."); 
else 
 System.out.println("You got an F."); 
 

12 



condition1? 
execute 

statement1 if (condition1) { 
    statement1; 
} else if (condition2) { 
    statement2; 
} else if (condition3) { 
    statement3; 
} else { 
 statement_else; 
}  
next_statement;  

Chained if-then-else Statement Flow 
Chart 

yes 

condition2? 
execute 

statement2 
yes 

condition3? 
execute 

statement3 
yes 

execute 
statement_else 

execute 
next_statement 

no 

no 

no 

13 



switch Statements 
• The switch statement is another way to test several cases generated by 

a given expression. 
 

• The expression must produce a result of type  char, byte, short or 
int, but not long, float, or double. 

 
   switch (expression) { 
   
   case value1: 
    statement1; 
    break; 
 
   case value2: 
    statement2; 
    break; 
 
   default: 
    default_statement; 
    break; 
  } 

• The break; statement exits the switch statement 
 14 



expression 
equals 

value1? 

expression 
equals 

value2? 

Do default action 

Do value1 thing 

Do value2 thing 

break 

break 

break 

Continue the  
program 

switch (expression){ 
    case value1: 
 // Do value1 thing 
 break; 
 
    case value2: 
 // Do value2 thing 
 break; 
 
    ... 
    default: 
 // Do default action 
 break; 
} 
// Continue the program 

y 

y 

n 

n 

switch Statement Flow Chart 

15 



Remember the Example… 
• Here is the example of chained if-else statements: 
 
if (grade == 'A') 
 System.out.println("You got an A."); 

 
else if (grade == 'B') 
 System.out.println("You got a B."); 

 
else if (grade == 'C') 
 System.out.println("You got a C."); 

 
else 
 System.out.println("You got an F."); 
 

16 



 switch (grade) { 
  case 'A': 
   System.out.println("You got an A."); 
   break; 
  case 'B': 
   System.out.println("You got a B."); 
   break;  
  case 'C': 
   System.out.println("You got a C."); 
   break;  
  default: 
   System.out.println("You got an F."); 
 }   

Chained if-then-else as switch 

• Here is the previous example as a switch 

17 



What if there are no breaks? 

• Without break, switch statements will execute the first statement for 
which the expression matches the case value AND then evaluate all 
other statements from that point on  
 

• For example: 
 

  switch (expression) { 
   
  case value1: 
   statement1; 
 
  case value2: 
   statement2; 
 
  default: 
   default_statement; 
 } 
 

• NOTE: Every statement after the true case is executed 

18 



y 

y 

n 

n 

switch (expression){ 
    case value1: 
 // Do value1 thing 
 
    case value2: 
 // Do value2 thing 
 
    ... 
    default: 
 // Do default action 
} 
// Continue the program 

expression 
equals 

value1? 
Do value1 thing 

Do value2 thing 

Do default action 

expression 
equals 

value2? 

Continue the 
program 

Switch Statement Flow Chart w/o breaks  

19 



Loops 
• A loop allows you to execute a statement or block of 

statements repeatedly. 
 
• There are 4 types of loops in Java: 

1. while loops 
2. do-while loops 
3. for loops 
4. foreach loops (coming soon!) 

20 



The while Loop  
  while (condition){ 
  statement 

  } 

 

• This while loop executes as long as condition is 
true. When condition is false, execution continues 
with the statement following the loop block.  
 

• The condition is tested at the beginning of the loop, so if 
it is initially false, the loop will not be executed at all.  

21 



Test condition 
is true? 

The while loop 

Execute loop 
statement(?) 

Next statement 

  while (expression){ 
  statement 

  } 

yes 

no 

while Loop Flow Chart 

22 



Example 
 
 int limit = 4; 
 int sum = 0;  
 int i = 1; 
 

  while (i < limit){ 
  sum += i; 

          i++; 
 } 

 

• What is the value of sum ? 
6 

i = 1 

i = 2  

i = 3 

i = 4 

sum = 1 

sum = 3 

sum = 6 

23 



do-while Loops 

• Similar to while loop but guarantees at 
least one execution of the body 
 

 
do { 
  statement; 
} 
while(condition) 

24 



do-while Flowchart 
execute  

statement 

execute  
next_statement 

 condition   
true? 

yes 

no 

do { 
  statement; 
} 
while(condition) 
next_statement; 
 

25 



do-while Example 
boolean test = false; 

 

do { 

  System.out.println(“Hey!”) 

} 

while(test) 

 

Output: 
Hey! 

26 



for Loop 

• Control structure for capturing the most 
common type of loop 

for (i = start; i <= end; i++) 
{ 

... 
} 

i = start; 
while (i <= end) 
{ 
  . . . 
  i++; 
}   
 
 

27 



Dissecting the for Loop 

 
The control of the for loop appear in parentheses and is made up of three 

parts. 
 

1. The first part, the initialization, sets the initial conditions  
for the loop and is executed before the loop starts. 
 

2. Loop executes so long as the condition is true and exits 
otherwise 
 

3. The third part of the control information, the update, is used to 
increment (update) the loop counter. This is executed at the end of 
each loop iteration. 

for (initialization; condition; update)  
{ 

statement; 
} 

28 



initialization 

The for loop 

condition 
== true 

update 

statements 

yes 

next_statement 

no 
for (initialization;  
     condition;  
   update)  
{ 
 //statements 
} 
next_statement; 

for Loop Flow Chart 

29 



Example 
 int limit = 4; 
int sum = 0; 
 

  for(int i = 1; i<=limit; i++ ) 

  { 

   sum += i; 

  } 
 

• What is the value of sum ? 
10 

i = 1 

i = 2  

i = 3 

i = 4 

i = 5  

sum = 1 

sum = 3 

sum = 6 

sum = 10 

     -- -- 

30 



Another Example 
 
 
 for ( int div = 0; div < 1000; div++ ) { 

 

  if ( div % 12 == 0 ){ 

    

     System.out.println(div+"is divisible by 12"); 

 
 } 

 } 

 

• This loop will display every number from 0 to 999 that is 
evenly divisible by 12. 

31 



Other Possibilities 
• If there is more than one variable to set up or increment they are separated by a 

comma. 
  for (i=0, j=0; i*j<1000; i++, j+=2) { 

 
  System.out.println(i+"*"+j+"="+i*j); 

 
 } 

• You do not have to fill every part of the control of the for loop but you must still 
have two semi-colons. 

  for (int i=0; i<100; ) { 
   

   sum += i; 
       i++; 

  }  
 
    *Straying far from convention may make code difficult to  
     understand and thus is not common 

 32 



Using the break Statement in Loops 

• We have seen the use of the break statement in the switch 
statement. 

• In loops, you can use the break statement to exit the 
current loop you are in. Here is an example: 

   
  int index = 0; 
 while (index <= 4) { 
 index++; 
 if (index == 3) 
  break; 

  System.out.println("The index is “ + index);  
  }   
 

 

The index is 1 

The index is 2 

index = 1 

index = 2 

index = 3 

33 



Using the continue Statement in Loops 

• Continue statement causes the loop to jump to the next 
iteration 

• Similar to break, but only skips to next iteration; doesn’t exit 
loop completely 

   
  int index = 0; 
 while (index <= 4){ 
 index++; 
 if (index == 3) 
  continue; 

  System.out.println("The index is “  + index);  
 }   
 

 

The index is 1 

The index is 2 

         -- -- 

The index is 4 

index = 1 

index = 2 

index = 3 

Index = 4 

34 



Nested Loops – Example 

• Printing a triangle 
 
for (int i=1; i<=5; i++){ 

  for (int j=1; j<=i; j++){ 

    System.out.println(“*”); 

  } 

} * 

* * 

* * * 

* * * * 

* * * * * 
35 



Control Structures Review Questions 
 
You are withdrawing money from a savings account.  
 
How do you use an If Statement to make sure you do 

not withdraw more than you have? 
 

if ( amount < balance ) 

{ 

    balance = balance – amount; 

} 

//next statement 

36 



Which Control Structure? 
• As a programmer, you will never be asked 

something like: “Write a for loop to…” 
 

• You will need to implement logic in your 
program that meets your specification and 
requirements 

 
• With experience, you will know which 

control structure to use. 
37 


	Accelerating �Information Technology �Innovation
	Agenda
	What are Control Structures?
	Block Statements
	Decision Statements: if-then 
	Dissecting if-then
	if-then Statement Flow Chart
	if-then Example
	if-then-else Statements
	if-then-else Statement Flow Chart
	if-then-else Example
	Chained if-then Statements
	Chained if-then-else Statement Flow Chart
	switch Statements
	switch Statement Flow Chart
	Remember the Example…
	Chained if-then-else as switch
	What if there are no breaks?
	Switch Statement Flow Chart w/o breaks 
	Loops
	The while Loop 
	while Loop Flow Chart
	Example
	do-while Loops
	do-while Flowchart
	do-while Example
	for Loop
	Dissecting the for Loop
	for Loop Flow Chart
	Example
	Another Example
	Other Possibilities
	Using the break Statement in Loops
	Using the continue Statement in Loops
	Nested Loops – Example
	Control Structures Review Questions
	Which Control Structure?

