
MIT AITI
Django Lab 1: Writing your first application

In this lab you will write your first Django application!

Everyone must complete this lab. Use Ubuntu. All file editing will be done in gedit
(Text Editor). In this lab, each step shows you the exact commands to run after the
$ sign. Make sure you type everything exactly as shown. Be especially careful with
Python files – indentation matters.

To set up for this lab:
Open VirtualBox and open the AITI VM. Maximize it so it takes up the whole computer
screen – you won’t need any programs for this lab other than VirtualBox.

Open Terminal. Type:
 $ wget http://aiti.mit.edu/media/programs/ghana-summer-
2013/materials/django_lab1.txt

This will download this lab as a text file so you can copy and paste the code for the files.
If the internet’s not working, don’t worry -- you can just type in the code from this
handout.
Open the lab with:
$ gedit django_lab1.txt &

I recommend dragging and resizing your terminal and gedit windows so each one takes
up half the screen. This makes it easy to use both at once. Your screen should look
something like this:

Now you’re ready to start the lab!

Steps to do the lab:
1. Navigate to your Desktop
 $ cd ~/Desktop

2. Create a new project called “webnotes”:
 $ django-admin.py startproject webnotes

If this gives an error, find Leah to help you get set up.

3. Change to the webnotes directory and look at the list of files. You should see 2 new

files in the directory.
$ cd webnotes
$ ls

4. Make a new directory called templates
 $ mkdir templates

5. We are now going to make a base template for our site. Create an html file called

“base.html” inside the templates folder, and then make a notes directory.
 $ cd templates
 $ mkdir notes
 $ gedit base.html

6. Place the following text into base.html, then save and close base.html
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
charset=utf-8" />
 <title>Webnotes</title>
 </head>
 <body>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 </body>
</html>

7. Change into the notes directory and add two files: detail.html and list.html.

These files will extend the base.html file that you have created, by overriding the
content section.

 $ cd notes
 $ gedit detail.html

{% extends 'base.html' %}
{% block content %}
 <h2>{{ note.title }}</h2>
 <p>{{ note.content }}</p>
{% endblock %}

 $ gedit list.html
{% extends 'base.html' %}

{% block content %}
 {% if note_list %}

 {% for note in note_list %}
 <a href="{% url ‘notes_detail’
note.id %}">{{ note.title }}
 {% endfor %}

 {% else %}
 You don't have webnotes
 {% endif %}
{% endblock %}

8. Edit the settings.py file so that django knows where to look for your templates:
 $ cd ~/Desktop/webnotes/webnotes
 $ gedit settings.py

a. At the top of the file, add these two lines:
import os # put this at the top of the file
PROJECT_ROOT =
os.path.realpath(os.path.dirname(os.path.dirname(__file__)))

b. find the line that starts with “TEMPLATE_DIRS”. You can search within a file

using ctrl-F. Replace the lines with the following:
TEMPLATE_DIRS = (
 os.path.join(PROJECT_ROOT, 'templates')
)

9. Keep settings.py open and edit the database configuration, by specifying sqlite3.

Find the following two variables in settings.py and edit them to have these values:
‘ENGINE’: 'django.db.backends.sqlite3',
‘NAME’: 'webnotes.db',

10. Now start (create) a new application inside this webnotes project:
$ cd ~/Desktop/webnotes

 $ django-admin.py startapp notes

11. The application will be placed in a new folder called “notes”. Navigate into it and

look at the list of files.
 $ ls
 $ cd notes
 $ ls

12. Open models.py and add a notes model *****
 $ gedit models.py

from django.db import models
class Notes(models.Model):
 title = models.CharField(max_length=255)
 content = models.TextField()
 def __unicode__(self): #note: 2 underscores on each side
 return self.title

13. Open views.py and add a list and detail view. These views define what data will be

displayed and how it will be displayed.
 $ gedit views.py

from django.template import Context, loader
from django.http import HttpResponse
from models import Notes

def notes_list(request):
 note_list = Notes.objects.all()
 t = loader.get_template('notes/list.html')
 c = Context({
 'note_list': note_list,
 })
 return HttpResponse(t.render(c))

def notes_detail(request, id):
 note = Notes.objects.get(pk=id)
 t = loader.get_template('notes/detail.html')
 c = Context({
 'note': note,
 })
 return HttpResponse(t.render(c))

14. Create a new file called “urls.py” and define some URLs that will access your

views:
 $ gedit urls.py

from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',
 url(r'^list/$', views.notes_list, name='notes_list'),
 url(r'^detail/(?P<id>\d+)/$', views.notes_detail,
name='notes_detail'),
)

15. Create a new file called admin.py and register the notes application with the built-
in admin application

 $ gedit admin.py

from notes.models import Notes
from django.contrib import admin

admin.site.register(Notes)

16. Navigate back to webnotes/webnotes, open the settings.py file, and go to the

INSTALLED_APPS section. Add ‘notes’ and uncomment the
django.contrib.admin app.

 $ cd ~/Desktop/webnotes/webnotes
 $ gedit settings.py

INSTALLED_APPS = (
 ...
 'notes',
 'django.contrib.admin',
)

17. Open the urls.py for your project (not the one for the notes app). Tell your project

urls.py that it should include the URLs from your notes app. Uncomment the
references to the admin urls.

 $ gedit urls.py
...
from django.contrib import admin
admin.autodiscover()
...
urlpatterns = patterns('',
 url(r'^notes/', include('notes.urls')),
 ...
 url(r'^admin/', include(admin.site.urls)),
...

18. Open a new tab to run the server from, by right-clicking and selecting “Open tab”. Go
to the top-level directory containing manage.py. Tell django to build a database
based on your models.

 $ cd ..
 $ python manage.py syncdb

When asked to make a superuser, say “yes” and enter a username, email, and
password. DO NOT FORGET THIS.

19. Run the development server
 $ python manage.py runserver

Create superuser

20. visit http://localhost:8000/admin, and add a note

21. visit http://localhost:8000/notes/list and see if your note is there

22. Once all of this is done, it's time to make a change. Add an author to the notes

application and output it in the detail page. Here's how to do it:
a. Open models.py

$ gedit ~/Desktop/webnotes/notes/models.py
b. Add an author field.

 Hint: it's very similar to the title field.
c. Edit the details template

$ gedit ~/Desktop/webnotes/templates/notes/detail.html
d. Output the author after the title in an <h3> tag
e. Go to the terminal where you ran python manage.py runserver, press

ctrl+c to stop it

http://localhost:8000/notes/list/
http://localhost:8000/notes/lista

f. Delete all previous data so that you have a clean database. rm is the
command to delete a file.
$ rm webnotes.db

g. Synchronize the database
$ python manage.py syncdb

h. Start the server again
$ python manage.py runserver

i. If your change worked, you should see an author field when adding notes in
the admin interface

Congrats, you just made your first Django webapp!

